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Best Linear Unbiased Estimate using Buys-Ballot Procedure  
when Trend-Cycle Component is Linear 

 
Iheanyi S. Iwueze1,  Eleazar C. Nwogu2 and  Jude C. Ajaraogu3 
 
The Best linear unbiased estimate (BLUE) of Buys-Ballot estimates when trend-cycle component is linear 
are discussed in this paper.  The estimates are those proposed by Iwueze and Nwogu (2004).  Discussed 
are the Chain Based Estimation (CBE) method and the Fixed Based Estimation (FBE) method.  The 
variates for the CBE method were found to have constant mean and variance but are correlated with only 
one significant autocorrelation coefficient at lag one. The variates for the FBE method were found to 
have constant mean, non-constant variance but with constant autocorrelation coefficient at all lags .  
Because the CBE variates exhibit stationarity, Best Linear unbiased estimators of the slope and intercept 
were derived.  Numerical examples were used to illustrate the methods. 
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Introduction 
 
Iwueze and Nwogu (2004) developed two methods of estimating the parameters of a linear trend-
cycle component from the periodic averages of the Buys-Ballot Table (Table 1).  The procedure 

was initially developed for short period series in which the trend-cycle component ( )tM  is 

jointly estimated and can be represented by a linear equation: 
 

     n,...,2,1t,tbaM t =+=          (1.1) 

 
where a is the intercept, b is the slope and t is the time point. 
 
The two alternative methods are:  (i) the Chain Base Estimation (CBE) method which computes 
the slope from the relative periodic average changes and (ii) the Fixed Base Estimation (FBE) 
method which computes the slope using the first period as the base period for the periodic 
average changes. 
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For short series in which the trend and cyclical components are jointly estimated, the two 
contending models for time series decomposition are the additive and multiplicative models 
(Chatfield (2004), Kendall and Ord (1990)). 
 

Additive model:               tttt eSMX ++=              (1.2) 

Multiplicative model:      tttt eSMX =             (1.3) 

 

where tM  is the trend-cycle component; tS  is the seasonal component with the property that 

( ) miSS jjsi ,...,2,1,1 ==+− , and te  is the irregular or random component.  Results 

obtained by Iwueze and Nwogu (2004) for the additive and multiplicative models are 
summarized in Table 2. 
 
It is clear from Table 2 that the trend-cycle estimates are the same for both the additive and 
multiplicative models.  We can also note from Table 2 that estimates of the intercept (a) and the 
seasonal indices ( )m,...,2,1i,S j =  depend on the estimate of the slope (b).  This paper will 

therefore concentrate on the Best Linear Unbiased Estimator (BLUE) of the slope (b) parameter. 
For the additive model (1.2), it is assumed that the irregular/error component et is the Gaussian 

( )2
1σ0,N  white noise, while for the multiplicative model (1.3), et is the Gaussian ( )2

1σ0,N white 

noise.  For the additive model (1.2), the assumption is that the sum of the seasonal component 
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Table 1:  Buys-Ballot Table 

 
p  

Season 
1 2 … j  … s .iT  

.iX  .iσ̂  

1 1X  2X  … jX  … sX  .1T  
.1X  .1σ̂  

2 1sX +  2sX +  … jsX +  … s2X  .2T  
.2X  .2σ̂  

3 1s2X +  2s2X +  … js2X +  … s3X  .3T  
.3X  .3σ̂  

… … … … … … … … … … 
i  ( ) 1s1iX +−  ( ) 2s1iX +−  … ( ) js1iX +−  … ( ) ss1iX +−  .iT  

.iX  .iσ̂  

… … … … … … … … … … 
m  ( ) 1s1mX +−  ( ) 2s1mX +−  … ( ) js1mX +−  … msX  .mT  

.mX  .mσ̂  

j.T  1.T  2.T  … j.T  … s.T  ..T    

j.X  1.X  2.X  … 
j.X  … 

s.X   
..X   

j.σ̂  1.σ̂  2.σ̂  … j.σ̂  … s.σ̂    ..σ̂  
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Table 2:  Buys-Ballot estimates for linear trend. 

 Additive model (1.2) Multiplicative model (1.3) 
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The multiplicative model (1.3) can be linearized to become the additive model (1.4) 
 

   nteSMX tttt ,...,2,1,**** =++=                                                      (1.4) 

 
where tettettettet eeSSMMXX log,log,log,log **** ==== . The behaviour of tet MM log* =  

when tM  is represented by a linear equation (1.1) have been studied by Iwueze and Akpanta 
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(2007) and it was shown that for 06.001.0 ≤≤− ab , *
tM  could still be represented by a 

straight line tM t βα +=* , with aelog=α  and ab=β .  The behaviour of tet SS log* =  to 

achieve
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  have been studied by Iwueze et al (2008).  The behaviour of tet ee log* =  for 

( )2* ,0~ σNe t  when ( )2,1~ σNe t  have been studied by Iwueze (2007) and it was shown that 

the logarithmic transform of the left-truncated ( )2,1 σN  distribution is approximately normal 

when 1.0<σ .  It follows that we can study the additive model (1.1) and apply the results obtain 

to the multiplicative model after linearization. 
 
The main objective of this paper is to obtain the BLUE of the slope parameter for the additive 
model.  Section 2 presents the covariance structure of CBE derived variables, while Section 3 
presents the covariance structure of the FBE derived variables.  Section 4 contains the 
determination of the BLUE for the CBE estimate of the slope parameter.  Section 5 presents the 
simple average of the CBE derived variables, Section 6 contains the numerical examples while 
Section 7 contains the concluding remarks. 
 
2.  Covariance Analysis of the CBE Derived Variables: Additive Model 
 

Under the CBE method, the estimate of the slope ( )b̂  was calculated as the average of 
( ) 1,...,2,1,ˆ −= mib c
i  given by Iwueze and Nwogu (2004) as: 

( ) ( ) 1,...,2,1,ˆ ..1 −=
−

= + mi
s

XX
b iic

i             (2.1)  
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Using (1.2), the periodic averages are given by 
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Hence, our variable of interest is now given by 
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The covariance between  ( )c
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For 1, >±= kkij , 
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We have shown that the sequence,( ) 1,...,2,1,ˆ −= mib c
i , of CBE derived variables have the 

covariance structure of a moving average process of order one (MA(1)).  For more details on 
MA(1) processes, see Box et al (1994), Chatfield (2004). 
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3.  Covariance Analysis of the FBE Derived Variables: Additive Model 
 

Under the FBE method, the estimate of the slope ( )b̂  was calculated as the average of 
( ) 1m,...,2,1i,b̂ f
i −=  given by Iwueze and Nwogu (2004) as: 
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Hence, the autocovariance and autocorrelation structures are: 
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We have shown that the sequence,( ) m,...3,2i,b̂ f

i = , of FBE derived variables are not stationary 

and their average as an estimate of slope (b),  will not give a reliable estimate in its present state. 
 
 
4.  Best linear unbiased estimate of slope (b) using the CBE derived variables 
 

The CBE derived variables ( )( )1m,...,2,1i,b̂ c
i −=  have been shown to be stationary and can 

be used for estimation, while the FBE derived variables ( )( )1m,...,2,1i,b̂ f
i −=  are not stationary 

and estimates based on them will not be reliable.  The sequence of CBE derived random 

variables ( ) 1m,...,2,1i,b̂ c
i −= , are found to have the covariance structure of a first-order 

moving average process (MA(1) process) with the autocorrelation function given by (2.11). 
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T is unbiased if and only if 
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For the second order stationary sequence of random variables ( ) 1m,...,2,1i,b̂ c

i −= , with 

autocorrelation structure (2.11), ( )Tvar  can be written as 
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Linear unbiased estimates of b  that have minimum variance (among all linear unbiased 
estimates) are called best linear unbiased estimates (BLUE.s).  Let 
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By equating ( ) 0aS j =∂∂ a , we obtain the system of linear equations given in (4.9). 
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We put the system of linear equations (4.9) in matrix form, to obtain 
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Evaluating (4.10) with 98765432110 1 aaaaaaaaaa −−−−−−−−−= , we obtained the 

following weights:  
 

082.0a;046.0a 21 ==  136.0;127.0;109.0 543 === aaa ; 127.0a 7 = ;  

109.0a8 = ; 082.0a 9 = ;  046.0a10 = ; ( ) 005.0S =a . 

 
Given in Table 3 are the weights for ( )20,...,3,2121,...,4,3 =−= mm .  The plot of ( )aS  against m 

is given in Figure 1.  Also illustrated in Figure 1 is the fact that ( )aS  follows an exponential 

distribution (Draper and Smith, 1999) given by 
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5.  Simple Average of the CBE Derived Variables 
 
Iwueze et al (2010) discussed the properties of the estimator based on the simple average (SAE: 
Simple average estimator) of the derived CBE variables given by 
 

     ( )
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=

m
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i
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1
b̂                       (5.1) 

 
The mean and variance of (5.1) are: 
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The SA estimate (5.1) is also a linear unbiased estimator of the slope (b) parameter. 
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     Table 3.  Sample sizes (m) and their corresponding weights( 1m,...,2,1i,a i −= ) 

ia  Sample size = m 
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

1a  0.500 0.300 0.200 0.143 0.107 0.083 0.067 0.055 0.046 0.039 0.034 0.029 0.025 0.022 0.019 0.017 0.016 0.014 0.013 

2a  0.500 0.400 0.300 0.229 0.179 0.143 0.117 0.097 0.082 0.070 0.060 0.052 0.046 0.041 0.037 0.033 0.030 0.027 0.025 

3a   0.300 0.300 0.257 0.214 0.179 0.150 0.127 0.109 0.094 0.082 0.072 0.064 0.057 0.052 0.046 0.042 0.038 0.035 

4a    0.200 0.229 0.214 0.190 0.167 0.145 0.127 0.112 0.099 0.088 0.079 0.071 0.064 0.058 0.053 0.048 0.044 

5a     0.143 0.179 0.179 0.167 0.151 0.136 0.122 0.110 0.099 0.089 0.081 0.074 0.067 0.061 0.056 0.052 

6a      0.107 0.143 0.150 0.146 0.136 0.126 0.115 0.106 0.096 0.088 0.080 0.074 0.068 0.063 0.058 

7a       0.083 0.117 0.127 0.127 0.122 0.115 0.108 0.101 0.093 0.086 0.080 0.074 0.068 0.064 

8a        0.067 0.097 0.109 0.112 0.110 0.106 0.101 0.094 0.088 0.083 0.077 0.073 0.068 

9a         0.054 0.082 0.094 0.099 0.099 0.096 0.093 0.088 0.084 0.079 0.075 0.070 

10a          0.046 0.070 0.082 0.088 0.089 0.088 0.086 0.083 0.079 0.076 0.071 

11a           0.039 0.060 0.072 0.079 0.081 0.080 0.080 0.077 0.075 0.071 

12a            0.034 0.052 0.064 0.071 0.074 0.074 0.074 0.073 0.070 

13a             0.029 0.046 0.057 0.064 0.067 0.068 0.068 0.068 

14a              0.025 0.041 0.052 0.058 0.061 0.063 0.064 

15a               0.022 0.037 0.046 0.053 0.056 0.058 

16a                0.019 0.033 0.042 0.048 0.052 

17a                 0.017 0.030 0.038 0.044 

18a                  0.016 0.027 0.035 

19a                   0.014 0.025 

20a                    0.013 

( )aS  0.250 0.100 0.050 0.029 0.018 0.012 0.008 0.006 0.005 0.004 0.003 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 
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Comparing (4.6) and (5.3), we note that the difference between the variances of the SAE and the 

BLUE lies in the difference between ∑∑
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i aaa)a(S  for the BLUE and 

( ) 21m

1

−
 for the 

SAE.  Figure 2 illustrates the differences.  The variance of the intercept ( )a  is given in Iwueze et 

al (2010) as: 
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aSm  so that variances of the estimates of the slope are the same for BLUE and 

SAE. 
       
6.  Empirical Examples 
 
The first example are simulations (all simulations and computations in this section are done with 
MINITAB) of n = 4m ( 18,...,11,8m = ) observations from ttt eStbaX +++= with

5.1S,2.0b,0.1a 1 −=== , 5.3S,5.2S 32 == , 5.4S4 −=  and ( )1,0N~e t .  The properties of the 

BLUE were also determined and compared with those from the Least Squares Estimation method 
(LSE) and Simple Average method (SAE) of the Buys-Ballot derived variables. 
 
As Table 4 shows, BLUE recovers the values of the slope and intercept used in the simulation 
better than the other two methods.  The variances of the estimates of the slope and intercept are 
also smaller for the BLUE than for the other two methods 
 
The autocorrelation function (acf) of the  residuals obtained after decomposition using the LSE, 
SAE and BLUE methods were used to confirm the adequacy of the fitted models.  Diagnostic 
checks on the residuals are discussed in Box et al (1994). 
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Table 4:  Summary of estimates of LSE, BLUE and SAE  
m  Method â  b̂  aσ̂  bσ̂  1S  2S  3S  4S  σ̂  

 
 
8 

LSE 
SAE 
BLUE 

1.309 
1.490 
1.084 

0.181 
0.170 
0.195 

1.261 
0.459 
0.361 

0.067 
0.025 
0.019 

-1.322 
-1.339 
-1.302 

2.534 
2.529 
2.541 

3.439 
3.444 
3.432 

-4.651 
-4.634 
-4.671 

0.996 
1.029 
0.977 

 
 
9 

LSE 
SAE 
BLUE 

1.174 
1.185 
0.965 

0.191 
0.190 
0.202 

1.196 
0.413 
0.313 

0.056 
0.021 
0.015 

-1.538 
-1.539 
-1.521 

3.086 
3.086 
3.092 

3.108 
3.108 
3.102 

-4.656 
-4.655 
-4.673 

0.875 
0.876 
0.861 

 
 
10 

LSE 
SAE 
BLUE 

1.170 
0.615 
1.006 

0.192 
0.219 
0.200 

1.106 
0.185 
0.170 

0.047 
0.020 
0.014 

-1.347 
-1.307 
-1.515 

2.403 
2.416 
2.347 

3.518 
3.504 
3.574 

-4.573 
-4.614 
-4.406 

0.999 
1.019 
1.004 

 
 
11 

LSE 
SAE 
BLUE 

1.666 
0.762 
0.987 

0.193 
0.211 
0.201 

1.109 
0.411 
0.306 

0.043 
0.017 
0.012 

-1.258 
-1.231 
-1.246 

2.593 
2.602 
2.597 

3.638 
3.629 
3.634 

-4.973 
-5.000 
-4.985 

0.963 
0.966 
0.957 

 
 
12 

LSE 
SAE 
BLUE 

1.481 
1.478 
1.360 

0.180 
0.181 
0.185 

0.961 
0.403 
0.296 

0.034 
0.015 
0.011 

-1.288 
-1.288 
-1.281 

2.180 
2.180 
2.183 

3.476 
3.476 
3.473 

-4.368 
-4.368 
-4.375 

0.960 
0.960 
0.958 

 
 
13 

LSE 
SAE 
BLUE 

1.199 
1.371 
1.056 

0.193 
0.186 
0.198 

1.026 
0.398 
0.524 

0.034 
0.014 
0.009 

-1.273 
-1.283 
-1.265 

2.683 
2.680 
2.686 

3.644 
3.648 
3.642 

-5.054 
-5.045 
-5.062 

0.947 
0.961 
0.943 

 
 
14 

LSE 
SAE 
BLUE 

0.970 
0.726 
0.852 

0.201 
0.210 
0.205 

0.926 
0.407 
0.259 

0.028 
0.013 
0.008 

-1.393 
-1.380 
-1.387 

2.622 
2.627 
2.625 

3.363 
3.358 
3.361 

-4.592 
-4.605 
-4.598 

0.992 
0.992 
0.990 

 
 
15 

LSE 
SAE 
BLUE 

1.265 
0.803 
1.147 

0.191 
0.206 
0.195 

0.847 
0.407 
0.268 

0.024 
0.013 
0.008 

-1.465 
-1.443 
-1.460 

2.393 
2.401 
2.395 

3.308 
3.301 
3.306 

-4.236 
-4.259 
-4.241 

0.982 
1.006 
0.962 

 
 
16 

LSE 
SAE 
BLUE 

1.166 
1.358 
1.036 

0.195 
0.189 
0.199 

0.867 
0.396 
0.213 

0.023 
0.012 
0.005 

-1.114 
-1.123 
-1.109 

2.520 
2.518 
2.523 

3.375 
3.377 
3.373 

-4.781 
-4.772 
-4.787 

0.969 
0.983 
0.967 

 
 
17 

LSE 
SAE 
BLUE 

1.130 
0.770 
1.034 

0.193 
0.203 
0.196 

0.848 
0.461 
0.260 

0.021 
0.013 
0.006 

-1.375 
-1.359 
-1.370 

2.465 
2.470 
2.466 

3.496 
3.490 
3.494 

-4.586 
-4.601 
-4.590 

1.144 
1.152 
1.142 

 
 
18 

LSE 
SAE 
BLUE 

1.124 
0.919 
1.044 

0.197 
1.044 
0.199 

0.743 
0.382 
0.226 

0.018 
0.010 
0.005 

-1.424 
-1.415 
-1.420 

2.280 
2.283 
2.282 

3.217 
3.213 
3.215 

-4.073 
-4.081 
-4.077 

0.960 
0.962 
0.959 

 
 
The second example is the 32 consecutive quarters of U.S beer production, in millions of barrels, 
from first quarter of 1975 to the fourth quarter of 1982, and is listed as Series W10 in Wei 
(1990).  In order to assess the forecasting performance of our models, we use only the first 30 
observations of the series for model construction. 
 
The estimates of the parameters using Least Squares Estimation method (LSE) are again 
determined and compared with those from the BLUE and SAE computed from the CBE derived 
variables.  The computational procedure for the slope (b) is laid out in Table 5 while Table 6 
gives the summary of the estimates. 
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Table 5:  Buys-ballot table for U.S. beer production. 
 
Year 

Quarter  
.iX  

 
.iσ̂  

 
( )c
ib̂  

 
ia  

 
( )c
ii b̂a  I II III IV 

1975 36.14 44.60 44.15 35.72 40.15 4.88 0.2550 0.083 0.0212 
1976 36.19 44.63 46.95 36.90 41.17 5.43 0.3575 0.143 0.0511 
1977 39.66 49.72 44.49 36.54 42.60 5.76 0.5425 0.179 0.0971 
1978 41.44 49.07 48.98 39.59 44.77 4.97 0.3200 0.190 0.0608 
1979 44.29 50.09 48.42 41.39 46.05 3.95 0.6800 0.179 0.1217 
1980 46.11 53.44 53.00 42.52 48.77 5.35 -

0.0875 
0.143 -

0.0125 
1981 44.61 55.18 52.24 41.66 48.42 6.34 0.6600 0.083 0.0548 
1982 47.84 54.27 - - 51.06 4.55 - - - 

j.X  42.04 50.13 48.32 39.19 44.99     

j.σ̂  4.42 4.07 3.46 2.78  5.6 6    

 
Table 6:  Summary of estimates of LSE, BLUE and SAE for U. S beer production  

Method â  b̂  aσ̂  bσ̂  1S  2S  3S  4S  σ̂  
LSE 
SAE 

BLUE 

39.099 
38.955 
38.885 

0.380 
0.390 
0.394 

1.790 
0.564 
0.461 

0.101 
0.033 
0.025 

-2.692 
-2.297 
-2.291 

5.018 
5.403 
5.405 

3.592 
3.207 
3.205 

-5.918 
-6.313 
-6.319 

1.244 
1.307 
1.311 

 
Wei (1990), ignoring  the stochastic trend in the series, used 30 observations of the series for 
Integrated Autoregressive Moving Average (ARIMA) model construction.  Based on the 
forecasting performance of his models, he settled on the model 
 

     ( )
( ) ( ) t

4

16.009.0
t

4 eB87.0149.1XB1 




 −+=−

±±
                   (6.1) 

39.2ˆwith 2 =σ . 

 

The one step ahead and two step ahead forecasts, ( ) 2and1forX̂ 30 =ll , from the forecast 

origin 30 are calculated for each estimation method.  The forecast errors and the corresponding 
summary statistics used by Wei (1990) are shown in Table 7. With respect to Table 7, MPE is the 
Mean Percentage Error, MSE is the Mean Square Error, MAE is the Mean Absolute Error and 
MAPE is the Mean Absolute Percentage Error as defined in Wei (1990). 
 

 
Table 7 :  Comparison of the forecasts between models 

Lead 
time 

Actual 
Value 

Wei (1990) LSE SAE BLUE 
Forecast 
Value 

 
Error 

Forecast 
Value 

 
Error 

Forecast 
Value 

 
Error 

Forecast 
Value 

 
Error 

1 52.31 54.38 -2.07 54.48 -2.17 54.24 -1.93 54.31 -2.00 
2 41.83 45.37 -3.54 45.35 -3.52 45.11 -3.28 45.18 -3.35 

MPE 
MSE 
MAE 

MAPE 

-6.2% 
8.4 
2.8 

6.2% 

-6.3% 
8.6 
2.9 

6.3% 

-5.8% 
7.2 
2.6 

5.8% 

-5.9% 
7.6 
2.7 

5.9% 



   CBN  Journal of Applied Statistics Vol. 2  No. 1                                                                             29 

 

 

 
The results of Table 7 indicate that the SAE and BLUE give approximate results that are better 
than those given by the LSE and ARIMA in terms of forecasts.  This example illustrates the fact 
that sometimes a simple descriptive model computed from the Buys-Ballot procedure may be 
preferred to the more complicated ARIMA and LSE methods in a series where all the methods 
are adequate in terms of the residuals. 
 
7.  Concluding Remarks 
 
This study has examined the Best Linear Unbiased Estimator (BLUE) of the slope (b) of a linear 
trend-cycle component of time series computed from the Buys-Ballot derived variables defined 
by Iwueze and Nwogu (2004). The emphasis on the slope is based on the fact that estimates of 
the other parameters (intercept and seasonal indices) depend on it. The properties of the BLUE 
were also determined and compared with those from the Least Squares Estimation method (LSE) 
and Simple Average method (SAE) of the Buys-Ballot derived variables. 
 
The results show that of the two derived variables (CBE and FBE), only the CBE derived 
variable were found to be stationary (with constant mean and variance) but are correlated with 
only one significant autocorrelation coefficient at lag one. The derived variable from the FBE are 
non-stationary with constant autocorrelation coefficient at all lags. Hence, they are considered 
incapable, in their present state, to give any reliable estimate. 
 
The variance of the BLUE for the slope (b) based on the CBE-derived variables was shown to 

depend on the sum of squares and cross-products S(a) of the weights ( )ia  of the derived 

variables. The values of S(a), in turn, depend on the number of periods (m). 
  
The variances of the estimates of the slope (the BLUE and SAE) are constant multiples of the 

variance of 






 σ
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2

i s

2
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 for SAE and S(a) for the BLUE. At 
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aSm  so that variances of the estimates of the slope are the same for BLUE and 

SAE. For m>3, the variances appear to decay exponentially as m increased. 
 
The estimate of the slope based on simple average is only a particular case of the BLUE in which 

all the weights are equal 








−
=

1

1
,.

m
aei i . The multipliers of 3

22

s

σ
 are, for every m >3, greater 

for SAE than BLUE. This ensures that the BLUE has minimum variance. As a consequence, the 
variances of the estimates of the intercept (a) are for every m>3, smaller for the BLUE than for 
the SAE. These are clearly supported by the results of the empirical examples shown in Table 4. 
Another important result is that (i) for m>3, the error variance is smaller for the BLUE than for 
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the SAE and LSE and (ii) for most m the estimates of the slope (b) and intercept (a) from BLUE 
are closer to the actual values used in the simulation than those from SAE and LSE. 
 
Therefore, when using Buys-Ballot procedure for time series decomposition, it is recommended 
that when trend-cycle component is linear, the BLUE for the slope computed from the CBE-
derived variable be used. This leads to more precise estimates of time series components. 
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