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Best Linear Unbiased Estimate using Buys-Ballot Procedure
when Trend-Cycle Component isLinear

|heanyi S. lwueze®, Eleazar C. Nwogu® and Jude C. Ajaraogu®

The Best linear unbiased estimate (BLUE) of Buys-Ballot estimates when trend-cycle component is linear
are discussed in this paper. The estimates are those proposed by Iwueze and Nwogu (2004). Discussed
are the Chain Based Estimation (CBE) method and the Fixed Based Estimation (FBE) method. The
variates for the CBE method wer e found to have constant mean and variance but are correlated with only
one significant autocorrelation coefficient at lag one. The variates for the FBE method were found to
have constant mean, non-constant variance but with constant autocorrelation coefficient at all lags .
Because the CBE variates exhibit stationarity, Best Linear unbiased estimators of the slope and inter cept
were derived. Numerical examples were used to illustrate the methods.

Keywords. Best linear unbiased Estimator, Buys-Ballot dedlivariables, stationarity, minimum
variance, Moving Average Process of order one.

JEL Classification: C22, C32.

I ntroduction

lwueze and Nwogu (2004) developed two methodstohesing the parameters of a linear trend-
cycle component from the periodic averages of tbhgsBBallot Table (Table 1). The procedure

was initially developed for short period serieswhich the trend-cycle componerﬁM ¢ ) IS
jointly estimated and can be represented by adiegaation:

M,=a+bt,t=12,..,n (1.2)

where a is the intercept, b is the slope andhagitme point.

The two alternative methods are: (i) the ChaineBastimation (CBE) method which computes
the slope from the relative periodic average charagel (ii) the Fixed Base Estimation (FBE)
method which computes the slope using the firsiogeas the base period for the periodic
average changes.
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For short series in which the trend and cyclicamponents are jointly estimated, the two
contending models for time series decomposition thee additive and multiplicative models
(Chatfield (2004), Kendall and Ord (1990)).

Additive model: X, =M, +S, +e, (1.2)
Multiplicative model: X, =M, S, e (1.3)

where M, is the trend-cycle componen®, is the seasonal component with the property that
S(i-1)s+j =9
obtained by Iwueze and Nwogu (2004) for the adeitiand multiplicative models are
summarized in Table 2.

e ;,1=12,..,m, and e, is the irregular or random component. Results

It is clear from Table 2 that the trend-cycle esties are the same for both the additive and
multiplicative models. We can also note from Tabl#hat estimates of the intercept (a) and the
seasonal indice$sj ,i=1,2,..,m) depend on the estimate of the slope (b). Thiepagll
therefore concentrate on the Best Linear Unbiasguin&tor (BLUE) of the slope (b) parameter.
For the additive model (1.2), it is assumed thatithregular/error component is the Gaussian
N(0,62) white noise, while for the multiplicative model.8), g is the GaussiaN(0,62 )white
noise. For the additive model (1.2), the assumpigothat the sum of the seasonal component

S

over a complete period is zefdz S, = OJ, while for the multiplicative model (1.3), the swh

i=0

the seasonal component over a complete periEEsj = SJ.
j=0

Table 1. Buys-Ballot Table

Season

p 1 2 j S T. | X, |6,
1 X, X, X X, T, | X, | 6,
2 Xei1 Xsi X X o T, | X, |0,
3 X i1 Xosio X X5 T, | X, | 6,
b X imy)sen | X(i-1)s+2 X(i-1)s+] X(i-nses | Ti | Xi | 6,
M | Xm-nser | X(n-1)se2 X(m-1)s+} X s m | X | Onm
T.j T, T, T.j T,

X X , X, X X . X

o G, g, G, g, G
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T :Z X(i-1)s+j » 174 2,..,m X, =—= =}z X(i-1)sey » 151, 2,...,m;
=1
T, :Z X(i-1)s+j o 17L 2,..8
i=1

m s m.o s . — T T
T..=;Ti.=;1—.j=zZx(i—l)s+j, X”:mi”szmi”syn:ms

i=1 j=1

. 1< - . . _
g :\/s—lz (X(i—l)sﬂ"xi,)2 ,1=L2,.,m 5 =\/12 (X(i—l)s+j_x.j)2 ,

i=1

Table 2: Buys-Ballot estimates for linear trend.

Additive model (1.2) Multiplicative model (1.3)
T, as+%s (2i -1)s+1] as+b7s[(2i—1)s+l]
X, a+g[(2i -1)s+1] a+g[(2i -1)s+1]
T, ma+m7b[2j+n—s]+msl [ma+m7b(2j+n—s)}sj
X, a+g[2j+n—s]+sj {a+g(2j+n—s)}sj
T na+n?b[n +1] na+n7b[n +1]
X a+g[n+1] a+g[n +1]
~ Ym._il. Ym._il.
b(CBE) . .
“ 1 < Y.,_XL 1 (X=X,
b(FBE) n_S;[ i—-1 ] n—s;[ i-1 ]
a Y”—%[n +1] Y"—%[n+1]
S, XVJ—{X._+2(2j—s—1)} X_l/{xn+2(2j—s—1)}

The multiplicative model (1.3) can be linearizetrome the additive model (1.4)

X, =M, +S, +e ,t=12, ..

., n

(1.4)

where x* =|og, X,,M; =log,M,, S, =log, S, €, =log,e,. The behaviour ofM; =log M,

when M, is represented by a linear equation (1.1) have Istedied by Iwueze and Akpanta
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(2007) and it was shown that fer001< b/a < 006, M, could still be represented by a
straight linem; =a + gt, with @ =log,a and S =b/a. The behaviour ofs’ =log, s, to

achiev isj = 5] have been studied by lwueze et al (2008). Timaweur of e, =log,e, for
j=0

e ~ N(O, 02) when e, ~ N(l, 02) have been studied by lwueze (2007) and it was shbnat

the logarithmic transform of the Ieft-truncatédj(l, 02) distribution is approximately normal
when g <01. It follows that we can study the additive mog@kell) and apply the results obtain
to the multiplicative model after linearization.

The main objective of this paper is to obtain tHdJE of the slope parameter for the additive
model. Section 2 presents the covariance strucdli@BE derived variables, while Section 3
presents the covariance structure of the FBE oderivariables. Section 4 contains the
determination of the BLUE for the CBE estimate lo# slope parameter. Section 5 presents the
simple average of the CBE derived variables, Sedi@ontains the numerical examples while
Section 7 contains the concluding remarks.

2. Covariance Analysisof the CBE Derived Variables: Additive Model

Under the CBE method, the estimate of the sléﬁé was calculated as the average of
ble),i=1,2, .., m-1 given by Iwueze and Nwogu (2004) as:

- X -X.
ple) = 20 2L G529 2 m-1 (2.1)

i
S

For the additive model the assumption is that thegular components are independent and
identically normally distributed with mean zero asdmmon variances? = g2[ e -~ N(0, o2 )]-

Under this assumptiors, ~ N[o, J:J g, ~ N[o, o? ] e ~ N(o, UZJ.

m n

Using (1.2), the periodic averages are given by

X, = a+g[(2i—l)s+l]+éi_,i=l,2, ey (2.2)
Hence, our variable of interest is now given by
b(c) =

()T(Hl). - )Ti.): b + (é(i+1). - éi.), i=1,2,..,m-1 (2.3)

0 |
0 |
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Therefore, the expected value and variancﬁi(ﬁf are

(6 ) E(b)+— (e(,”).—éi_):b (2.4)
‘var( [(Bi(c)—b)z}:S%E[(é(ul). - € )2]
2
- 2;‘3 (2.5)
The covariance between(®) andb(®) is

o1, 5(7)= 1, = 69 - (61 )61 - (5

1 _ _ _ _ _
:S—ZE[G(.+1) €(j+1). ~€(1+1). 8 T & (.1, +ei.ej.] (2.6)
Forj =i +1,
-1_(_ -1( o? -o*
[y :?E(e(ﬁ+1).)zs—(?j: <3 (2.7)
Forj=i-1,
-1 -1 o? ~0?
o =—E(e2)="o 2 |=
;= g2E(e?) S[Sj = (28)
Forj=izxk,k>1,
g, =0 (2.9)

In summary, letR(k ) = cov(b*), b{¢),, ) and p, = r(k)/R(0). The results (2.5) through (2.9)
can be summaries as follows.
20%/s%, k=0
R(k)={-0?/s% k=%1 (2.10)
0, k>1
1, k=0
o, =1-1/2,k=+1 (2.11)
0, k>1
We have shown that the sequerhiﬁé),, I =1, 2,..., m—1, of CBE derived variables have the

covariance structure of a moving average proceswadr one (MA(1)). For more details on
MA(1) processes, see Box et al (1994), ChatfieGD@).
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3. Covariance Analysisof the FBE Derived Variables: Additive M odel

Under the FBE method, the estimate of the slcﬁﬁé was calculated as the average of

b{"),i=12,.., m-1 given by lIwueze and Nwogu (2004) as:

B(f)_x(i+1). 1

(=20 2L =12 . ,m-1 3.1
A (=) o
Using (1.2),
5p>=x<i(;1_>-l‘):1= P =12 et (32)

E(Bi(f)): E(b)+ (i _11)SE(e(i+1). _él.): b (3.3)
var(Ai(‘)):oi(,) :E[(Bff) -b )Z}— t _11)252 [(é(m). e, )2]
__ 2c’
-ﬁ (3.4)

Forj=i+k,
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Hence, the autocovariance and autocorrelationtstes are:

20° N
R(k)_ (|_1)253,k_0 (3.7)
(N (VR
1, k=0
pk:{l/Z, k=+1+2 .. (3.8)

We have shown that the sequemée, i = 2,3.., m, of FBE derived variables are not stationary
and their average as an estimate of slope (b),naitlgive a reliable estimate in its present state

4. Best linear unbiased estimate of slope (b) using the CBE derived variables

The CBE derived variable&)i(”, i=1,2,..,m- 1) have been shown to be stationary and can
be used for estimation, while the FBE derived \kzieia(Bi(f )i=1,2,..,m- 1) are not stationary
and estimates based on them will not be reliablhe sequence of CBE derived random
variabled(®),i=1,2,.., m-1, are found to have the covariance structure ofrsi-drder

moving average process (MA(1) process) with the@urtelation function given by (2.11).
Let a,,a,,,a,_; be any set of real numbers. A linear estimatéhefmeanb = E(Bi“)) is

given by

m-1
T=Y a bl (4.1)
t=1

If T is unbiased, we obtain that

E(T)= mz_:lai E(Bi(” )= mz_:lai b= bmz_:lai =b (4.2)
T is unbiased if and only if
m-1

D>.a =1 4.3)
t=1

The variance of T is given by

var(T) = r_nz_“laf var(v, ) + 2> Y a;a, cov(Y,, Y, ) (4.4)

i < J
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For the second order stationary sequence of randariables b(<) i=1,2,.., m-1, with
autocorrelation structure (2.14)r(T) can be written as

var(T) = R(0) S a7 +2R(1) S a, . (4.5)

2032 J { 2. al - Ezai a, +1} (4.6)

Linear unbiased estimates df that have minimum variance (among all linear uséd
estimates) are called best linear unbiased estinfBtdJE.s). Let

-2

S(a)= .Za Z A, (4.7)

=1

From (4.6)min(var(T))=R(0)min(S(a)). Hence, the BLUE ofb is obtained if we choose

m-1
a,,a,,,a,_, that minimizes(a) with respect to the constrain}_ a, =1. However, when

t=1

p, =0 forallk, a, =t
m_

m-1
As an example of the minimization of (4.7) subjgot the constraint) a =1, we let
i=1

m-1=10= m =11. Equation (4.7) reduces to

S(a)=a?+a?+a2+a’+a’+a’+a’+a’+a’
+(1-a,-a,-a,-a,-a,-a,-a, -a, -a, )?
-a,a,-a,a, -a,a, -a,a, —a,a, —a,a, —a,a,

—ag(l—al—az—a3—a4—a5—a6—a7—a8—a9) (4.8)

By equatingas(a)/aa, = 0, we obtain the system of linear equations give(if).
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4a,+ a, +2a,+2a,+2a,+2a,+2a,+2a;+3a,=2
a,+4a,+ a, +2a, +2a,+2a,+2a,+2a,+3a,=2
2a,+ a,+4a,+ a, +2a,+2a,+2a,+2a,+3a,=2
2a,+2a,+ a, +4a,+ a; +2a,+2a,+2a,+3a,=2
2a,+?2a,+2a,+a, t4a,+ a, +2a,+2a,+3a,=2 (4.9)
2a,+2a,+2a,+2a,+ a, +4a,+ a, +2a,+3a,=2
2a,+2a,+2a,+2a,+2a,+a, +4a,+a, +3a,=2
2a,+2a,+2a,+2a,+2a,+2a,+ a, +4a,+2a,=2

3a, +3a, +3a, +3a, +3a, + 3a, +3a, + 2a, + 6a, =3

We put the system of linear equations (4.9) in mdtrm, to obtain

o]
iy

412222223 2
a, 141222223 2
a, 214122223 2
a, 221412223 2
a, [=| 222141223 2 (4.10)
a, 222214123 2
a, 222221413 2
a, 222222142 2
. 333333326 3

©o

Evaluating (4.10) witha, =1-a,-a,-a,-a,-a,-a,-a, -a, —a,, We obtained the
following weights:

a, =0046, a, =0082 a, = 0.109; a, = 0.127; a, = 0.136; a, = 0.127,
a, = 0.109; a, =0082;  a,, = 0.046; S(a) = 0.005.

Given in Table 3 are the weights fer=3, 4,.., 21(m-1=2, 3, ..., 20). The plot ofs(a) against m
is given in Figure 1. Also illustrated in Figureid the fact thats(a) follows an exponential
distribution (Draper and Smith, 1999) given by
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- 2
S(a) = 02862~ 07156m + 00177m ; R2 = 099 (4.11)
s(a)
0.3
0.25
Original
0.2 Exponential: S(a) = g02862- 07156m + 00177m? "R2 =099
0.15
01 - Quadrati¢s(a) = 0.2413- 0.0354m + 0.0012m?2 ; R2 = 069
0.05 -
O T T T T 1
0 5 10 15 20 25 m
-0.05 -

Figure 1. Plot OfS(a):mz_laiz _nizai a;,, againstm.
i=1 i=1

5. Simple Average of the CBE Derived Variables

Iwueze et al (2010) discussed the properties ot#tienator based on the simple average (SAE:
Simple average estimator) of the derived CBE vé&gbiven by

b =L 3B (5.1)

“{5re)s (5.2)
var(f)(c) )= GE(CJ = (m }1)2 {Elvar(ﬁ,(c) )+ zmz_ll mZ—:lCOV(BI(C), BEC) )}
] ﬁ {Tz_llvar(f’.(” )- 2mzf cov(b*), b(e), )}
i ) o)

(from (2.5) and (2.7))
20°

:m{m—l—m+2}:(mfl)2[20j (5.3)

The SA estimate (5.1) is also a linear unbiasadasdr of the slope (b) parameter.
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Table3. Sample sizes (m) and their corresponding wefghts=1, 2, .., m - 1)

Sample size = m
8 9 10 11 12 13 14 15 16 17 18 19 20 21

3 4 5 6 7
0.025 0.022 0.019 0.047 0.016.014 | 0.013

0.500 | 0.300 | 0.200( 0.143 0.107f 0.083 0.067 0.055 460.0 0.039 | 0.034| 0.029

0.500 | 0.400 | 0.300f 0.229 0.179 0.143 0.117 0.097 820.0 0.070 | 0.060| 0.052| 0.044 0.04L  0.037 0.083 0.030.027 | 0.025

0 0.127 0.109 0940.| 0.082 | 0.072| 0.064] 0.057 0.05p 0.046 0.042 0.038.035

0.300 | 0.300 | 0.257| 0.214 0.179 0.15
0.048 40.04

0.200 0.229 | 0.214| 0.19Q 0.167 0.145 0.127 0.112.0990 | 0.088 | 0.079 0.071 0.064 0.058 0.0%3

0.143 | 0.179| 0.179| 0.167 0.151 0.136 0.122  0.110.099 | 0.089 | 0.081| 0.074 0.067 0.061 0.0%  0.0p2
0.058

0.115 0.106.096 | 0.088 | 0.080| 0.074 0.068 0.063

[}

0.107 | 0.143| 0.150| 0.144 0.136 0.12

0.12¢ 0.115 0.1p8 10.100.093 | 0.086| 0.080| 0.074 0.068  0.064

0.083 | 0.117| 0.127| 0.127

0.067 | 0.097| 0.109| 0.117 0.11p 0.106  0.1p1 94.90 0.088 | 0.083| 0.077| 0.073 0.068

0.070

0.054 | 0.082| 0.094| 0.099 0.09p 0.096 0.0p3 088.| 0.084 | 0.079| 0.075

0.046 | 0.070| 0.082( 0.088 0.089 0.088 0.086.08® | 0.079 | 0.076| 0.071

0.039 | 0.060| 0.072 0.07 0.081 0.080 0.080.077 | 0.075 | 0.071

0.034 | 0.052| 0.064 0.071 0.074 0.074 0.079€.073 | 0.070

0.029 0.046 0.057, 0.064  0.067 0.068 8.060.068

0.025| 0.041| 0.052 0.058 0.061 0.063 64.0

0.022 | 0.037| 0.044 0.058 0.086 0.0%8

0.019 | 0.033] 0.042 0.048  0.052

0.017| 0.030, 0.038 0.044

0.016| 0.027| 0.03§

0.014| 0.025

0.013

0.00@.001 | 0.001

S(a) | 0.250 | 0.100 | 0.050

0.003 | 0.002| 0.002 0.00p 0.001 0.0p1

0.029 0.01 0.012 0.0(PB 0.006 0%0.0 0.004
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Comparing (4.6) and (5.3), we note that the difieeebetween the variances of the SAE and the
BLUE lies in the difference betweesty =S a? - S a,a,., for the BLUE and(;2 for the
i A * m-1

)

SAE. Figure 2 illustrates the differences. Thdaree of the intercegta) is given in lwueze et
al (2010) as:

var(é):onz+(n;lj2 var(f)) (5.4)

m . m-1 ~
whereb = b(¢) = ( 1 1)Zb$°> for the SAE anch=T = " a,b{®) for the BLUE. At
m-21)i=2 t=1
1

2
j so that variances of the estimates of the slop¢har same for BLUE and

m=3 S(a) =(m—1

SAE.
6. Empirical Examples

The first example are simulations (all simulati@m&l computations in this section are done with
MINITAB) of n = 4m (m=8,11..,18) observations from,6 =a+bt+S, +e, with

a=10,b=02,S,=-15,S,=25,S,=35,S, =-45 ande, ~ N(0,1). The properties of the

BLUE were also determined and compared with thom® the Least Squares Estimation method
(LSE) and Simple Average method (SAE) of the Bugdidd derived variables.

As Table 4 shows, BLUE recovers the values of tbhpesand intercept used in the simulation
better than the other two methods. The variantdiseoestimates of the slope and intercept are
also smaller for the BLUE than for the other twathoels

The autocorrelation function (acf) of the residuabtained after decomposition using the LSE,
SAE and BLUE methods were used to confirm the adegwf the fitted models. Diagnostic
checks on the residuals are discussed in Box(é0aH).

m-1 m-2
03 1 BLUE: s(a)= Y a? - Y a,a,,,
0.5 1 i=1 i=1
S(a) . SAE: CEE
0.15 -
0.1
0.05 - m
0 : . : : .
0 5 10 15 20 25

1
(m-1

Figure2: Plot ofs(a)= nilaf - mfai a;., and against m
i=1 i=1

)2
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Table4: Summary of estimates of LSE, BLUE and SAE

m | Method | a b 0, G, S, S, S, S, o
LSE 1.309 | 0.181 | 1.261 | 0.067 | -1.322 | 2.534 | 3.439 | -4.651 | 0.996
SAE 1.490 | 0.170 | 0.459 | 0.025 | -1.339 | 2.529 | 3.444 | -4.634 | 1.029

8 | BLUE 1.084 | 0.195 | 0.361 | 0.019 | -1.302 | 2.541 | 3.432 | -4.671 | 0.977
LSE 1.174 1 0.191 | 1.196 | 0.056 | -1.538 | 3.086 | 3.108 | -4.656 | 0.875
SAE 1.185|0.190 | 0.413 | 0.021 | -1.539 | 3.086 | 3.108 | -4.655 | 0.876

9 | BLUE 0.965 | 0.202 | 0.313 | 0.015 | -1.521 | 3.092 | 3.102 | -4.673 | 0.861
LSE 1.170 | 0.192 | 1.106 | 0.047 | -1.347 | 2.403 | 3.518 | -4.573 | 0.999
SAE 0.615 | 0.219 | 0.185 | 0.020 | -1.307 | 2.416 | 3.504 | -4.614 | 1.019

10 | BLUE 1.006 | 0.200 | 0.170 | 0.014 | -1.515 | 2.347 | 3.574 | -4.406 | 1.004
LSE 1.666 | 0.193 | 1.109 | 0.043 | -1.258 | 2.593 | 3.638 | -4.973 | 0.963
SAE 0.762 | 0.211 | 0.411 | 0.017 | -1.231 | 2.602 | 3.629 | -5.000 | 0.966

11 | BLUE 0.987 | 0.201 | 0.306 | 0.012 | -1.246 | 2.597 | 3.634 | -4.985 | 0.957
LSE 1.481 | 0.180 | 0.961 | 0.034 | -1.288 | 2.180 | 3.476 | -4.368 | 0.960
SAE 1.478 | 0.181 | 0.403 | 0.015 | -1.288 | 2.180 | 3.476 | -4.368 | 0.960

12 | BLUE 1.360 | 0.185 | 0.296 | 0.011 | -1.281 | 2.183 | 3.473 | -4.375 | 0.958
LSE 1.199 | 0.193 | 1.026 | 0.034 | -1.273 | 2.683 | 3.644 | -5.054 | 0.947
SAE 1.371 |1 0.186 | 0.398 | 0.014 | -1.283 | 2.680 | 3.648 | -5.045 | 0.961

13 | BLUE 1.056 | 0.198 | 0.524 | 0.009 | -1.265 | 2.686 | 3.642 | -5.062 | 0.943
LSE 0.97C | 0.201 | 0.92¢ | 0.02¢ | -1.39¢ | 2.62Z | 3.36% | -4.592 | 0.99-
SAE 0.726 | 0.210 | 0.407 | 0.013 | -1.380 | 2.627 | 3.358 | -4.605 | 0.992

14 | BLUE 0.852 | 0.205 | 0.259 | 0.008 | -1.387 | 2.625 | 3.361 | -4.598 | 0.990
LSE 1.265 |1 0.191 | 0.847 | 0.024 | -1.465 | 2.393 | 3.308 | -4.236 | 0.982
SAE 0.803 | 0.206 | 0.407 | 0.013 | -1.443 | 2.401 | 3.301 | -4.259 | 1.006

15 | BLUE 1.147 1 0.195 | 0.268 | 0.008 | -1.460 | 2.395 | 3.306 | -4.241 | 0.962
LSE 1.166 | 0.195 | 0.867 | 0.023 | -1.114 | 2.520 | 3.375 | -4.781 | 0.969
SAE 1.358 | 0.189 | 0.396 | 0.012 | -1.123 | 2.518 | 3.377 | -4.772 | 0.983

16 | BLUE 1.036 | 0.199 | 0.213 | 0.005 | -1.109 | 2.523 | 3.373 | -4.787 | 0.967
LSE 1.13C | 0.19% | 0.84¢ | 0.021 | -1.37% | 2.46% | 3.49¢ | -4.58¢ | 1.14«
SAE 0.770 | 0.203 | 0.461 | 0.013 | -1.359 | 2.470 | 3.490 | -4.601 | 1.152

17 | BLUE 1.034 | 0.196 | 0.260 | 0.006 | -1.370 | 2.466 | 3.494 | -4.590 | 1.142
LSE 1.124 1 0.197 | 0.743 | 0.018 | -1.424 | 2.280 | 3.217 | -4.073 | 0.960
SAE 0.919 | 1.044 | 0.382 | 0.010 | -1.415 | 2.283 | 3.213 | -4.081 | 0.962

18 | BLUE 1.044 1 0.199 | 0.226 | 0.005 | -1.420 | 2.282 | 3.215 | -4.077 | 0.959

The second example is the 32 consecutive quartéssSobeer production, in millions of barrels,
from first quarter of 1975 to the fourth quarter 182, and is listed as Series W10 in Wei
In order to assess the forecasting pedoo® of our models, we use only the first 30

(1990).

observations of the series for model construction.

The estimates of the parameters using Least Squesgmation method (LSE) are again
determined and compared with those from the BLU& SAE computed from the CBE derived
variables. The computational procedure for theesifhb) is laid out in Table 5 while Table 6

gives the summary of the estimates.
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Table5: Buys-ballot table for U.S. beer production.

Iwueze, Nwogu andjaraogu

Quarte
Year |l e fivo | x| 6 | b |a  |abl
1975 | 36.14| 44.60 44.1% 3572 40.15 4.88 0.2550 30080212
1976 | 36.19| 4463 46.9% 36.90 41.17 543 0.3575 30180511
1977 | 39.66| 49.72 4449 36.54 42.640 56 0.5425 90,10.0971
1978 | 41.44| 49.07 4898 39.59 44.77 497 0.3200 00/1®0608
1979 | 44.29| 50.09 4842 41.39 46.05 395 0.6800 9017.1217
198C | 46.11 | 53.4< | 53.0C | 42.5 | 48.771 | 5.3F | - 0.14% | -
0.0875 0.0125
1981 | 44.61| 55.18 52.24 41.66 48.42 6.34 0.6600 30080548
1982 | 47.84| 54.27 - - 51.06 4556 - - -
X 42.0¢ | 50.1¢ | 48.3z | 39.1¢ | 44.9¢
5, 44z | 4.07 |3.4€ |27¢ 5.6¢€
Table6: Summary of estimates of LSE, BLUE and SAE foilS_beer production
Method a b G, 8, S, S, S, S, 4]
LSE 39.099 | 0.380 | 1.790 | 0.101 | -2.692 | 5.018 | 3.592 | -5.918 |1.244
SAE 38.955 | 0.390 | 0.564 | 0.033 | -2.297 | 5.403 | 3.207 | -6.313 | 1.307
BLUE 38.88: | 0.39¢ | 0.461 | 0.02¢ | -2.291 | 5.40° | 3.20° | -6.31¢ | 1.31]

Wei (1990), ignoring the stochastic trend in tleeies, used 30 observations of the series for
Integrated Autoregressive Moving Average (ARIMA) deb construction. Based on the
forecasting performance of his models, he settitethe model

( Je.

1- 087 B*

(+o016)

(1-8%)x, = 149 +

(+009)

(6.1)

with 62 = 239.

The one step ahead and two step ahead forecféggs(,f)for ¢ =1and2, from the forecast

origin 30 are calculated for each estimation methdtie forecast errors and the corresponding
summary statistics used by Wei (1990) are showiralrie 7. With respect to Table 7, MPE is the
Mean Percentage Error, MSE is the Mean Square ,BWtAE is the Mean Absolute Error and
MAPE is the Mean Absolute Percentage Error as ddfin Wei (1990).

Table7 . Comparison of the forecasts between models

Lead | Actual Wei (1990) LSE SAE BLUE
time | Value | Forecast Forecast Forecast Forecast
Value Error Value Error Value Error | Value Error
1 52.31 54.38 -2.07 54.48 -2.17 54.24 -1193 5431 2.00-
2 41.83 45.37 -3.54 45.35 -3.52 45.11 -3]28 4518 3.35
MPE -6.2% -6.3% -5.8% -5.9%
MSE 8.4 8.6 7.2 7.6
MAE 2.8 2.9 2.6 2.7
MAPE 6.2% 6.3% 5.8% 5.9%
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The results of Table 7 indicate that the SAE andJBLgive approximate results that are better
than those given by the LSE and ARIMA in termsarketasts. This example illustrates the fact
that sometimes a simple descriptive model compéraah the Buys-Ballot procedure may be

preferred to the more complicated ARIMA and LSE Imoels in a series where all the methods
are adequate in terms of the residuals.

7. Concluding Remarks

This study has examined the Best Linear UnbiaséidhB®or (BLUE) of the slope (b) of a linear
trend-cycle component of time series computed ftbenBuys-Ballot derived variables defined
by lwueze and Nwogu (2004). The emphasis on thgesi® based on the fact that estimates of
the other parameters (intercept and seasonal s)dispend on it. The properties of the BLUE
were also determined and compared with those fr@rLeast Squares Estimation method (LSE)
and Simple Average method (SAE) of the Buys-Ballrtived variables.

The results show that of the two derived variad€eBE and FBE), only the CBE derived
variable were found to be stationary (with constaetan and variance) but are correlated with
only one significant autocorrelation coefficientag one. The derived variable from the FBE are
non-stationary with constant autocorrelation co#ht at all lags. Hence, they are considered
incapable, in their present state, to give anyabéti estimate.

The variance of the BLUE for the slope (b) basedien CBE-derived variables was shown to
depend on the sum of squares and cross-producjsoStae Weights(ai) of the derived

variables. The values of S(a), in turn, dependchemumber of periods (m).

The variances of the estimates of the slope (thedBland SAE) are constant multiples of the

2 2
20 jThe multipliers are[ 1 j for SAE and S(a) for the BLUE. At

s? m-1

variance of b, (

1

m=3, S(a) =( j so that variances of the estimates of the slopeha same for BLUE and

SAE. For m>3, the variances appear to decay expialigras m increased.

The estimate of the slope based on simple avesagely a particular case of the BLUE in which
2

: 1 20
all the weights are equél & a = mj The multipliers of 3

for SAE than BLUE. This ensures that the BLUE hasimmum variance. As a consequence, the
variances of the estimates of the intercept (a)f@arevery m>3, smaller for the BLUE than for
the SAE. These are clearly supported by the resfliltise empirical examples shown in Table 4.
Another important result is that (i) for m>3, theoe variance is smaller for the BLUE than for

are, for every m >3, greater
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the SAE and LSE and (ii) for most m the estimatethe slope (b) and intercept (a) from BLUE
are closer to the actual values used in the simul#éhan those from SAE and LSE.

Therefore, when using Buys-Ballot procedure foretiseries decomposition, it is recommended
that when trend-cycle component is linear, the BLIdEthe slope computed from the CBE-
derived variable be used. This leads to more prexstimates of time series components.
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